Fun with Lego MindStorms EV3 for Absolute Beginners.

Second Edition

Ying Chen, Yaya Lu and DrGraeme

October 2015 (YouTube version)

Copyright CC BY-NC-ND 4.0

Versions of this course are also available as a playlist on YouTube:

http://bit.ly/1LkfNm2

and as an ePub eBook:

http://bit.ly/1MHwhU5

as well as a MOOC at Udemy:

http://bit.ly/1FG7fpd

1) Introduction and Overview

Ying Chen gives a brief overview of our "Robotics for Absolute Beginners, using Lego MindStorms EV3-G". She includes some of the reasons we have put this course together, and what is included. To start the course, click on, or type in to your browser, the link below.

http://bit.ly/1FQh9io

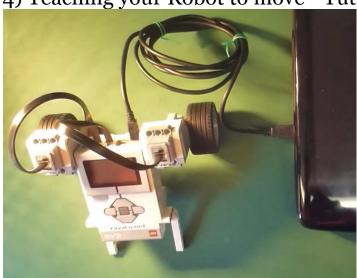
2) Build Your First Robot - Tutorial

Let us build our very first robot. It is just about the simplest robot we can build with the Lego EV3 set. It will be your pupil. You will be its teacher. In the next couple of lessons you will find out how to teach it to do what you tell it to do. But that will come later. Let us start by making our first robot, Botticelli, right now. to do this, click on, or type in to your browser, the link below.

http://bit.ly/1gv6xih

We would like to thank Yaya Lu, who built Botticelli under our cameras. You can find out more about her by clicking on, or typing in to your browser, the link below.

http://bit.ly/1hbLWRl



To allow us to teach Botticelli (and the other robots we will build later) what to do, we need to have special software installed inside our Laptop or Desktop computer. The first video tells us more about what software we need, and why we need it.

http://bit.ly/1W5Ktuv

We need to download and install the free LEGO EV3 Home Edition Editing Software on our own Laptop or Desktop, before we can teach our Robot how to move. The following video shows an installation on a Windows 7 computer. Installations on other computers are roughly similar.

http://bit.ly/1JdZNfj

4) Teaching your Robot to move - Tutorial.

Now that we have installed the software, we need to find out how to use it. This tutorial teaches us how to connect Botticelli to our Laptop or Desktop computer, and how to teach Botticelli to move by typing in our first program to our laptop or desktop computer. To see the video of parts 1 and 2, use the link below.


http://bit.ly/1W5Kv5M

Our LEGO EV3 computer brick has an "operating system" that is just called "firmware". Occasionally LEGO issues updated firmware for the EV3 bricks. If you see a notice telling you that the firmware on your brick needs updating, this video shows you how to update your EV3 computer brick. To see the video of part 3, use the link below.

http://bit.ly/1ikqnhs

Now that we have the software working, we can find out if Botticelli obeys our command to move. This video also shows us how to save our program (so we can play with it again later), and also how to turn off Botticelli. To see the video of part 4, use the link below.

http://bit.ly/1MtvUiX

Let us pretend that an Alien Ambassador has come to Earth. We don't know whether the Alien is dangerous or not. We will send Botticelli to approach the Alien instead of us, because if anything goes wrong it will be a Robot and not us that will be zapped. We need to teach Botticelli to move, smile and speak. We will need to figure out how far to send Botticelli so that it does not collide with the Alien Ambassador – that might start an intergalactic war!

http://bit.ly/1NAmS2a

Before Botticelli starts, it should seem to be nice and friendly - Smile Botticelli!

http://bit.ly/1YhiNVB

Next we want our Alien to go to the "Red Carpet" in front of the Alien. We must be very careful not to collide with the Alien (might cause an intergalactic war!!!)

http://bit.lv/1NAmXCV

When the Robot reaches the Alien Ambassador, we want Botticelli to sav a polite "Hello", change its smile to a "waiting patiently" smile, and wait for a reply.

http://bit.lv/1KpfFN2

Unfortunately we have had a lot of problems with Alien's Universal Translators not working properly. Botticelli has waited, and has not received a reply. So maybe we will have to tell Botticelli to look disappointed, say a polite "Thank you" and "Goodbye".

http://bit.ly/1MtwEEs

Next we have to get Botticelli back to safety away from the Alien. It will look disappointed at not being able to speak with the Alien. It will back away from the Alien, so it can keep an eye on the Alien to make sure nothing goes wrong. Bring Botticelli back home to safety.

http://bit.lv/1MtwHAk

If you have access to an A1 printer, you could download and print out this .arena (.pdf format) that we use.

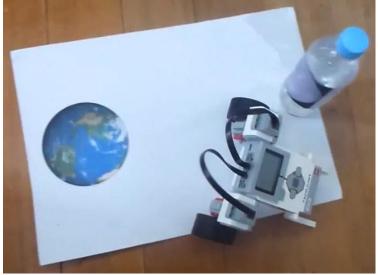
http://bit.ly/1KYACot

6) Changing Botticelli into LucyBot - Tutorial

Botticelli is a really nice Robot, but we found that it had problems going backwards on some carpets that had ridges, so to fix this we will redesign our Robot by adding a back wheel and changing the motors. We will name our new Robot LucyBot.

http://bit.ly/1Yhjf6c

Next we need to add a back wheel to LucyBot. LEGO provides two different EV3 sets. The two sets have different contents. The back wheels of each set are different. Watch one of the two videos below to find out how to add a back wheel to LucyBot.


If you are using the Home set, use the link below.

http://bit.ly/1KkiwaZ

If you are using the Education set, use the link below.

http://bit.ly/1Kkixf6

7) Going around the Moon – Tutorial & Challenge.

Let us pretend that LucyBot leaves the "Earth", goes out to one side of side of our "Moon", goes around the Moon, and comes back to land safely on Earth; see the video: http://bit.ly/1iAl7a5

First we want to teach LucyBot to go out in to space, alongside our Moon.

http://bit.ly/1MeYPUK

Next we need to teach her to move in a gentle curve.

http://bit.ly/1LALof9

Coming safely back to land on Earth is really important!

http://bit.lv/1Kpg7ee

How many ways can you teach your Robot to "Go around the Moon"? In the past our students have made many marvellous attempts at teaching their Robots to go in an imaginary journey around the moon - here are a few we managed to capture. The first video shows some of the first Robot journeys.

http://bit.lv/1LALraF

If our Robotics Session was a longer one, some students had time to be more ambitious. Take a look at these, especially the last one, where everything went wrong, but like the Astronauts in Apollo 13, he persevered, and eventually overcame his problems and got back to Earth - even if he is the only student in 3/4 of a decade of assisting multiple schools that I have seen bring his Space Craft in to Earth backwards! Incredible persistence!

http://bit.ly/1NAwlXf

If you have access to an A3 printer, an arena that we have used for this tutorial is available for download, click below.

http://bit.ly/1MPpZ7T

Alternately, you could reuse the arena that we have already used in Chapter 5, the download link of this arena is shown below.

http://bit.ly/1KYACot

8) A Robot Floor Cleaner - Challenge.

Our pretend "floor" is divided into squares, and to "clean" this floor LucyBot must pass over each square. To see an overview of this Challenge, click on the link below.

http://bit.lv/1JeoEN7

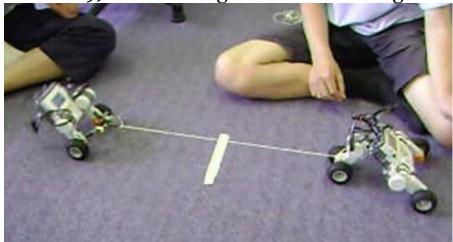
The squares can be passed in any order. Because this is a Challenge, we are not giving you detailed instructions about how to teach LucyBot to clean the floor. However you might get some good ideas by watching the very different ways that other students, using other robots, have "cleaned their floors". These videos are from (in order) Margate School, Huonville School, a TAG workshop and Mt. Nelson School.

http://bit.ly/1ikrKwx

http://bit.ly/1KjRwdW

http://bit.ly/1ikrPQK

http://bit.ly/1W4GI8K


If you want some extra help in this Floor Cleaner Challenge, then the hints in the following link may prove useful.

http://bit.ly/1Kkjnse

If you have access to an A1 printer, a pdf template we have used for this tutorial can be downloaded from this link (Google Chrome, Firefox, Safari and Edge seem to work better than Internet Explorer for downloading this template).

http://bit.ly/1hHHZmF

9) A Robot Tug-of-War - Challenge.

This is a Challenge, so we do not give you detailed instructions. However you might get some good ideas by watching the video below to see how other students have faced the Tug-Of-War Challenge. Modify your present Robot so that you think it will be a good Tug-Of-War Robot. Then find some string, a couple of big paper clips, and have fun! To see how other students have played "Tug-Of-War", click on the link below.

http://bit.ly/1Lkn5Gs

10) Building your Third Robot - Tutorial.

Because your Robot was probably wrecked in the previous Tug-of-War Challenge, we suggest you build the three wheeled Robot YayaBot, which can be used in quite a few of the following Challenges which teach your Robot to see light, and not bump into walls. Let us take a look at what YayaBot looks like, click on the link below, or type this link in to your web browser.

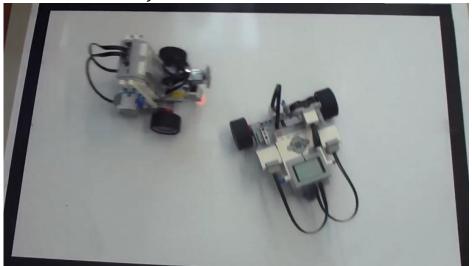
http://bit.lv/1MtBEcs

We can build YayaBot from both the LEGO EV3 Education and Home sets. To see the first video that shows how to build YayaBot, click below.

http://bit.ly/1LAPbJh

Because the Education and Home sets are different, the second half of building YavaBot is different for the Education and Home sets.

If you have a Home Set, to see the second part of the YayaBot build, click below.


http://bit.lv/1UZ1c5O

If you have an Education set, to see the second part of the YayaBot build, click below http://bit.ly/1iAqXbn

Thanks to Yaya Lu, who build this robot under our cameras; to see more about Yaya, click below.

http://bit.ly/1hDd23H

In the Japanese sport of SUMO, players try to push each other out of the ring. This tutorial shows you how to teach your Robot to go at high speed across the floor, but when it comes to a ring around the floor that is a contrasting shade, it stops, backs away, turns around, and charges forward again.

To see an overview of Robot SUMO using our LEGO MindStorms EV3 robot YayaBot, click on the link below, or type it into your web browser.

http://bit.lv/10JLmG7

This video shows how to teach YayaBot to use the color sensor to find the edge of the SUMO ring.

http://bit.ly/1KkosAI

This video show you how write code in EV₃-G to help YayaBot stop at the edge of the SUMO ring.

http://bit.ly/1iT2n5s

How do we teach YayaBot to travel around inside the SUMO ring, trying to push out her opponents? Click on the link below, or type it into your web browser to find out.

http://bit.ly/1Kplk5J

If you have access to an A1 printer, you may like to print out this ".pdf" format SUMO ring that we use for this tutorial. Click on the link below, or type it into your Chrome, Firefox, Edge or Safari web browser to download this SUMO arena.

http://bit.ly/1jjheqo

12) Follow the Edge of a Line - Tutorial.

"Following a line" is a classic problem in robotics. In this tutorial we learn how to teach YayaBot to follow the edge of a line using one Color Sensor. It is important that there is a clear distinction in shade between the background colour and the line itself. This skill has a potential use in many competitions (e.g. RoboCup Jr. and First Lego League).

To see an overview of this line-following tutorial, click on the link below, or type this link in to your web browser.

http://bit.ly/1KtxNtB

To find out the theory of how we could use YayaBot's Color Sensor to detect the edge of a line, click below.

http://bit.ly/1FjLyun

To find out which EV3-G coding commands we can use to teach YayaBot to find the edge of a black line when starting from a white surface, click below.

http://bit.ly/1iAreLr

To find out how to bring all these EV3-G programming commands together, to teach our robot to follow the edge of a line, click below.

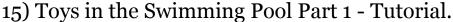
http://bit.ly/1OAhywo

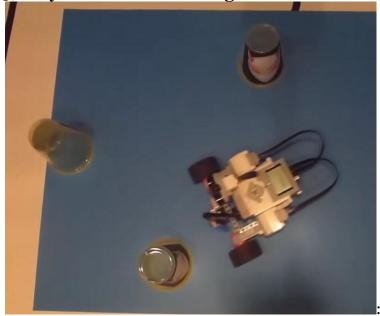
We can set up a tape maze using electrician's tape, and foam or wooden panels. This video shows how.

http://bit.ly/1GNW3Si

How do we follow colored lines using our EV3 robot using its color sensor? The next video shows what happens when we try to do just that.

http://bit.ly/1GNW3Si


We can also print out templates for use in robot line-following, if an A3 printer is available. These templates can be combined in many different ways to challenge our Robots, as shown in the next video.


http://bit.ly/1LjenH3

Walled mazes are alternatives to the flat mazes we have used so far. This video show how we have used walled mazes made from individual tiles. The tiles are colorcoded to assist following maze plans, and have the added advantage that they stack easily and compactly for storage and transport. The tiles are the same size as the rooms in the International RoboCup Junior Rescue B event, so these mazes could be used as the first of the many steps necessary to prepare a robot for this and similar robotics competitions that use walled mazes.

http://bit.ly/1LZh7Nh

13) & 14) Reserved for future tutorials.

This Tutorial follows on from the Chapter 11) tutorial "Robot SUMO", which you should complete before enjoying this tutorial.

You can see an overview of this tutorial by clicking on the link below, or typing this link in to your web browser.

http://bit.lv/1YhsmDX

Suppose a class has had some good fun in a swimming pool, but has been careless and left some toys and equipment floating in the pool. The teacher does not have a swimming costume. Let us teach our Robot to help the teacher by pushing all the toys in the swimming pool to the edge where the teacher can collect them without getting wet. If you are in a class, you could have a competition to see which Robot can clear the swimming pool in the shortest time - but, to be fair, make sure all the toys are put back in the same place in the swimming pool between each Robot run! To find out how to clear the swimming pool using your LEGO Robot, click on the link below, or type this link in to your web browser.

http://bit.ly/1F5fkU6

Teacher/Mentor Note:

The LEGO Color sensors are quite sensitive to the hue of the "blue" being used. Comments on the Internet suggest that these sensors are factory "tuned" to the colors used by LEGO in their Robotics sets. Following some failures, we have found we get the most reliable results by taking a piece of blue LEGO, chosen from our robotics set, in to the stationery shop with us, and choosing the cardboard sheet that is closest to the LEGO version of "blue".